Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion
نویسندگان
چکیده
To optimize contributions of uncertain input variables on the statistical parameter of given model, e.g., reliability, global reliability sensitivity analysis (GRSA) provides an appropriate tool to quantify the effects. However, it may be difficult to calculate global reliability sensitivity indices compared with the traditional global sensitivity indices of model output, because statistical parameters are more difficult to obtain, Monte Carlo simulation (MCS)-related methods seem to be the only ways for GRSA but they are usually computationally demanding. This paper presents a new non-MCS calculation to evaluate global reliability sensitivity indices. This method proposes: (i) a 2-layer polynomial chaos expansion (PCE) framework to solve the global reliability sensitivity indices; and (ii) an efficient method to build a surrogate model of the statistical parameter using the maximum entropy (ME) method with the moments provided by PCE. This method has a dramatically reduced computational cost compared with traditional approaches. Two examples are introduced to demonstrate the efficiency and accuracy of the proposed method. It also suggests that the important ranking of model output and associated failure probability may be different, which could help improve the understanding of the given model in further optimization design.
منابع مشابه
Global Sensitivity Analysis of Multi-state Markov Reliability Models of Power Equipment Approximated by Polynomial Chaos Expansion Analiza Globalnej Wrażliwości Wielostanowych Modeli Niezawodności Markowa Dla Urządzeń Energetycznych Aproksymowanych Za Pomocą Rozwinięcia W Chaos Wielomianowy
Reliability and availability of electric power system equipment (e.g., generator units, transformers) are often evaluated by defining and solving Markov models. Transition rates among the identified equipment states are estimated from experimental and field data, or expert judgment, with inevitable uncertainty. For model understanding and to guide validation and confidence building, it is of in...
متن کاملConstruction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion
Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all approximation methods, polynomial chaos expansion is one of the most efficient to calculate var...
متن کاملSensitivity study of dynamic systems using polynomial chaos
Global sensitivity has mainly been analyzed in static models, though most physical systems can be described by differential equations. Very few approaches have been proposed for the sensitivity of dynamic models and the only ones are local. Nevertheless, it would be of great interest to consider the entire uncertainty range of parameters since they can vary within large intervals depending on t...
متن کاملGlobal sensitivity analysis by polynomial dimensional decomposition
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for ...
متن کاملUncertainty quantification and global sensitivity analysis of complex chemical process using a generalized polynomial chaos approach
Uncertainties are ubiquitous and unavoidable in process design and modeling. Because they can significantly affect the safety, reliability and economic decisions, it is important to quantify these uncertainties and reflect their propagation effect to process design. This paper proposes the application of generalized polynomial chaos (gPC)-based approach for uncertainty quantification and sensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018